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Abstract
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The Weather and Atmospheric Effects for Simulation (WAVES) suite
of models calculates and visualizes environmental effects due to
natural clouds, haze, and fog. These models determine the
illumination through multiple inhomogeneous cloud layers and the
resulting radiance field. Other effects calculated with these models are
forward scattering and optical turbulence. WAVES comprises BLIRB
(the Boundary Layer Illumination and Radiative Balance model),
ATMOS (a turbulence model), PixelMod (an image modifier), and
VIEW (a viewing geometry model). Other models will be added to this
suite in the future. A model being developed for the near future is
3DSMOKE, which is based on the EOSAEL (Electro-Optics Systems
Atmospheric Effects Library) COMBIC (Combined Obscuration Model
for Battlefield-Induced Contaminants) model. A ToolKit is being
developed to aid in the viewing of input, output, and intermediate
data within WAVES. This suite of models can simulate a scene or can
be used to modify an image. This overview discusses the scope of this
modeling suite, and maps the other documentation for the suite.
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Preface
This report is one in a series of reports documenting the Weather and
Atmospheric Visualization Effects for Simulation (WAVES) suite of
models. WAVES predicts illumination and radiance information for a
three-dimensional, variable atmosphere as a function of cloud type and
optical density, including partly cloudy skies at visual and infrared
wavelengths. WAVES was developed to augment atmospheric propaga-
tion calculations made by the Air Force models, Moderate Resolution
Transmittance Model (MODTRAN) and Cloud Scene Simulation Model
(CSSM). This series of Army Research Laboratory technical reports will
include eight volumes, to be published individually (see sect. 5).
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1. Introduction
The Weather and Atmospheric Visualization Effects for Simulation
(WAVES) suite of models predicts illumination and radiance information
for a three-dimensional, variable atmosphere as a function of cloud type
and optical density, including partly cloudy skies at visual and infrared
wavelengths. WAVES also predicts electro-optic (EO) propagation effects
for horizontal and slant paths through the natural atmosphere. Illumina-
tion and propagation effects are critical for accurate target acquisition and
scene generation. The military has an interest in generating realistic
imagery for a variety of weather conditions and displaying it on various
computer systems for broad applications in Army wargames and simula-
tions, information and planning, test and evaluation, training, and engi-
neering and development. Augmenting realism in simulation models has
driven Army Research Laboratory EO modeling researchers to develop a
suite of models that compute the effects of the atmosphere on the propa-
gation of electromagnetic energy traversing through the battlefield atmos-
phere (Shirkey et al, 1995). The visualization is of the scattering and
transmission properties of the atmosphere (in terms of cloud and aerosol
types, locations, and densities) into the local, spectrally dependent,
three-dimensional (3-D) directional radiances and transmittances for a
generally 3-D inhomogeneous atmosphere. These quantities are then used
to determine, along the line-of-sight for each pixel in the image, the
transmission, blurring, and path radiance effects.

WAVES gives the user the ability to modify images to include the effects
of weather and atmosphere or to generate images with these effects
accurately computed. WAVES performs calculations on two types of
images: computer-generated synthetic images and real sensor images. For
both types, WAVES uses range-dependent, line-of-sight, transmission,
and path radiance effects to modify the images. Also, for the non-real-
time or time-averaged modifications, WAVES can include the effects of
turbulence through blurring.

The WAVES 3-D grid of atmospheric illumination and propagation
information can be used in simulations for testing and evaluation, analy-
sis, planning, training, and research. The 3-D information can be used in
constructive simulations, such as JSIMS (http://www.jsims.mil), with
some modification and reduction of the amount of information used by
the constructive simulation.

In the past, the Electro-Optics Systems Atmospheric Effects Library
(EOSAEL) has been the Army standard set of models for computing
battlefield effects for EO and acoustic sensors (Wetmore, 1993). This
library has been commercialized through the Small Business Innovative
Research Contracts program and a cooperative research and development
agreement between the Army Research Laboratory and ONTAR Corpora-
tion from 1995 to 1998 (Gillespie et al, 1997). This mature product is now
available commercially from ONTAR Corporation (www.ontar.com or
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www.eosael.com), with a friendly user interface or as legacy FORTRAN
code through the Defense Modeling and Simulation Resource Repository
(a web address will become available summer 1998 through the Defense
Modeling and Simulation Office (DMSO) web page) or from TECNET, by
contacting Dr. Alan Wetmore (Army Research Laboratory). WAVES is the
new generation of atmospheric models available through the Army
Research Laboratory. Whenever possible, models for WAVES are adapted
from EOSAEL from the line-of-sight point calculations to the newer 3-D
nonhomogeneous atmospheric environment. WAVES was conceived and
developed under a series of tri-service programs to obtain a complete
modeling and simulation of visualization and imaging of the atmospheric
environment. WAVES’ beginnings may be traced to the Smart Weapons
Operability Enhancement (SWOE) Program, through the Target Acquisi-
tion Modeling Improvement Program (TAMIP), the DMSO Environmen-
tal Effects for Distributed Interactive Simulation (E2DIS) program, and is
now under the DMSO Executive Agent for Space and Atmosphere pro-
gram for the radiometric validation of the Integrated Cloud Scene Simula-
tion (CSSM) Model (Cianciolo, 1996) and the Boundary Layer Illumina-
tion and Radiative Balance (BLIRB) model (Zardecki, 1993b).
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2. WAVES Overview
The WAVES suite of models predicts illumination and radiance informa-
tion for a 3-D variable atmosphere as a function of cloud type and
amount, including partly cloudy skies at visual and infrared wavelengths.
It also predicts EO propagation effects for horizontal and slant paths
through the natural atmosphere. The main models in the simulation suite
comprise BLIRB, a 3-D spectral radiative transfer code (Zardecki and
Davis, 1991; Wetmore and Zardecki, 1993; Zardecki, 1992, 1993a, and
1993b); VIEW, an output database access code for line-of-sight path
radiance/transmittance/turbulence evaluations (Zardecki, 1992, 1993a,
and 1993b); PixelMod, for image spectral estimation and atmospheric
effects modifications of images (Tofsted, 1993, 1994); and ATMOS, a
turbulence model for evaluating the vertical profile of the refractive index
structure parameter (Beland, 1993; Orgill et al, 1993; Rachele and Tunick,
1994). The WAVES suite has a number of visualization tools being devel-
oped for it, which will be described in another volume of this report
series. This software is being designed to allow for the visualization of
input, intermediate, and output data from the WAVES suite. An example
of such data would be a visualization tool that determines the locations of
clouds to be placed within the BLIRB space or modeled volume. The
turbulence data calculated within ATMOS are then used within the VIEW
model to evaluate the so-called receiver coherence diameter (Beland,
1993). This parameter is used to calculate the effects of turbulence blur-
ring of images in the PixelMod code (Tofsted, 1993). The PixelMod code is
being rewritten at this time to allow more general system calculations,
such as sensor effects. Both VIEW and PixelMod will eventually be part of
a WAVES ToolKit, rather than part of the atmospheric propagation
calculations.

To perform the range-dependent calculations, WAVES uses line-of-sight
radiative transfer calculations that generate the data for image modifica-
tion. These line-of-sight calculations require a description of the radiation
fluxes and extinction throughout the local environment. Radiation fluxes,
turbulence parameters, and extinctions are calculated by the first phase of
the WAVES models. The real-time image modification is done by
PixelMod, which in turn uses databases created by the BLIRB model. The
non-real-time image modification is done by the PixelMod program with
line-of-sight data created by the VIEW program, based on 3-D databases
that are generated by the BLIRB program.

The BLIRB algorithm is a 24-stream (or n-stream) discrete ordinates
method (DOM) approach to radiative transfer. BLIRB accounts for the
scattering in the atmosphere, and MODTRAN is used for the molecular
absorption. BLIRB calculates the direct and diffuse illumination at the
earth’s surface in the spectral range between 0.35 and 40 µm. The model
also provides wavelength-dependent radiation fields from the earth’s
surface to the region up to 12 km above the earth’s surface (Zardecki,
1993b).
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MODTRAN (Acharya, 1993; Berk, 1989, 1995; Chetwynd, 1996) is an Air
Force simulation product, as is the CSSM (Cianciolo, 1996), with which
WAVES was designed to be compatible. The region outside the space
modeled by WAVES is described by MODTRAN. MODTRAN also pro-
vides the molecular extinction needed to complete the atmospheric
description of WAVES. A wide variety of natural clouds can be simulated
using the full 3-D CSSM output, and that information is interfaced to the
WAVES model to provide a 3-D grid of cloud shadow information on the
ground. In the near future, a 3-D statistically fluctuating smoke cloud
model (COMBIC-STATBIC) will be interfaced to WAVES to provide a
more complete atmospheric simulation model (Ayres et al, 1998; O’Brien
and Hoock, 1998).

BLIRB was developed for near-earth scenarios, and deals with an area up
to 20 km2 and from ground level up to 5 to 12 km. This allows most
cloud-related phenomena to be explored. BLIRB uses an iterative DOM to
calculate the direct solar (or lunar) flux, the directional radiances, and the
total local extinction and scattering for all points on a grid with typical
spacing of 250 m. It performs these calculations for spectral bands defined
as in MODTRAN. These calculations allow complex inhomogeneous
cloud fields to be used and the resulting complex radiation fields pro-
duced. The extension beyond the 1-D vertical profiles available in
MODTRAN is essential to realistic modeling of the battlefield. The direc-
tional effects allow for realistic changes in the appearance of scenes as the
observer rotates; the inhomogeneity allows for clouds to engulf the
observer or target, or pass between them, all in a self-consistent, radio-
metrically correct manner.

BLIRB requires, as input, optical properties of the atmospheric medium
calculated from MODTRAN4 and the EOSAEL PFNDAT (Tofsted et al,
1997) aerosol phase function database. MODTRAN4 also provides the
solar insolation at the top of the modeled volume, for multiple paths in
terms of spectrally dependent direct and diffuse terms. Calculations are
separated into different modules, to make the WAVES suite as flexible as
possible. To maximize the use of each BLIRB calculation, the input sce-
narios to BLIRB should represent a general class of weather. BLIRB then
calculates the 3-D database of wavelength-dependent extinction, scatter-
ing, and directional radiances. This information is used by VIEW to
calculate nonhomogeneous range-dependent path radiance and transmit-
tance, integrating along the multiple paths of interest. VIEW may also use
a subset of the wavelength range of BLIRB. The path of interest is defined
by the location of the observer and the viewing elevation and azimuth
angles. The visualizer, or ToolKit, is used to simulate what those data look
like at any of the intermediate stages of calculations.

The result of the BLIRB model is a database of extinction, scattering, and
directional radiances that depend on the wavelength and position in 3-D
space. These values are used for the viewing and imaging tools as they
project lines-of-sight through space from the observing sensor to the
elements that make up the scene.
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ATMOS is used to calculate the vertical profile of the refractive index
structure parameter, Cn

2, assuming horizontal homogeneity. This turbu-
lence calculation is made using easily obtainable meteorological param-
eters (Rachele and Tunick, 1994). The refractive index structure parameter
is used in a modulation transfer function (MTF) that is folded into the
propagation calculations to give time-averaged effects, or blurring, from
turbulence. Real-time fluctuations due to turbulence are not computed
with this model.

VIEW computes the transmittance, path radiance, turbulent coherence
diameter characterizing blurring due to optical turbulence, and param-
eters characterizing aerosol forward scattering for a set of observer lines
of sight specified by the user. Each of these range-dependent parameters
are computed by integrating along the LOS. VIEW integrates along each
specified line of sight to determine the range-dependent effects of interest
(Zardecki, 1993b). These parameters are subsequently applied in
PixelMod.

PixelMod applies the effects of forward scattering, path radiance, turbu-
lence, and transmission to background objects that are within the image
field by computing the image modification due to the atmosphere on a
pixel-by-pixel basis (Tofsted, 1993). PixelMod simulates wavelength-
dependent effects by estimating the spectral content of each pixel on a
color image, applying spectrally dependent atmospheric effects to each
spectral band, and reconstructing an output color image based on
weighted responses of the simulated receiver (Tofsted, 1994).

Figure 1 is a logical connection diagram between the different modules
currently in the WAVES suite of atmospheric effects models. Lavender
boxes indicate executables, gray boxes indicate data or files, and the white
box is the graphics toolbox. The PixelMod code uses the output from the
VIEW model. It is not shown in this diagram because it is being written
into a more general, useful form. Other models, such as the 3DSMOKE

MODTRAN Input
Files

MODTRAN Output
Files

CSSM Input File 3DSMOKE Input File ATMOS Input File

CSSM Output File 3DSMOKE Output File ATMOS Output File

MODTRAN CSSM 3DSMOKE ATMOS

BLIRB BLIRB Output
File VIEW

VIEW Output FileVIS5D Graphics

Figure 1. Logical
connection diagram
for WAVES.
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model based on COMBIC-STATBIC, will soon become part of this suite.
As WAVES evolves, the physics models will remain at the core of the
suite, and VIEW and PixelMod will become part of the ToolKit that will
accompany the WAVES suite.

The general description of the currently used radiative transfer calcula-
tion process has been reported by Wetmore and Zardecki (1993). The
general physics in the turbulence calculations in ATMOS are described by
Rachele and Tunick (1994). Technical documentation and a reference
guide are planned as part of the documentation for the WAVES suite. This
documentation is described later in this report.

The image conversion process starts with the analysis of the image and
conversion, pixel-by-pixel, to a spectrally resolved element. This allows
the creation of many spectral band images similar to the three RGB
images from a common video source. Since each pixel represents a point
in a 3-D geometry, based on observer position and look direction and
range to a given pixel, the appropriate data from BLIRB can be applied to
modifying the pixel’s spectral content. The final step is to re-combine the
spectrally resolved information into the three RGB signals for display.
Tofsted describes both the general image processing approach (1993) and
the spectral estimation process (1994).

A project to develop data visualization for the various stages of WAVES
data is under way at this time. Various nonproprietary tools, such as
VIS5D (http://iris.ssec.wisc.edu/vis5d.html), GrADs (http://grads.iges.
org/grads/head.html), and TOSL-TOEM (http://www7180.nrlssc.navy.
mil/homepages/TOSL/TOSL.html) are being evaluated for use with
WAVES data. These visualization tools would allow the WAVES user to
easily view information that moves from one part of WAVES to another.
Another ongoing effort is the object-oriented model wrappers that are
being developed for WAVES. These wrappers will allow users to incorpo-
rate all or portions of WAVES (and MODTRAN/CSSM) into simulations
that require High-Level Architecture (HLA) or Distributed Interactive
Simulation (DIS) compliance (Army Research Laboratory Broad Agency
Announcement (BAA) contract DAAL01-97-C-0152). Figure 2 shows how
the various modules in WAVES and the Air Force models, MODTRAN
and CSSM, will interact in an HLA environment. This figure is taken from
the WAVES milestone document by Seablom (1998).

WAVES is being developed so that there is easy interchange of models;
that is, we can easily substitute a new turbulence model for ATMOS or
radiative transfer model for BLIRB, if we have another model that works
better for a specific application. Input/output for all models is described
in the user’s manual so that such an interchange is easy.

Many portions of these models have been scientifically evaluated, in
comparisons to other models and comparisons to data. Another volume
in this series of reports is devoted to a discussion of the model evalua-
tions that have been conducted thus far (Wells, 1995, 1996; Gillespie et al,
1994; Tofsted et al, 1995; Wetmore, 1997; Mozer, 1997).
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Figure 2. WAVES HLA structure, which can be run from programs such as TAOS through
applications programming interface or graphical user interface.
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3. Image Modification and Data Visualization
Images may be modified with the effects described in section 2 with the
use of the following algorithm:

   

Sij = Tij Iij + Kkl IklΣ
k = l – n
l = j – n

i + n
j + n

+ Pij ,

where Sij is the brightness of the sensor pixel, Tij is the transmission
coefficient from image pixel to sensor pixel, Iij is the brightness of the
image pixel, Kkl is the blurring kernel of size 2n + 1, and Pij is the bright-
ness of the path radiance from image pixel to sensor.

An example of illumination values being visualized is shown in figure 3.
This figure depicts the intensity of illumination, at the surface with some
cumulus clouds in the volume of interest. The red indicates more intense
illumination, and the blue indicates cloud shadows or less intense illumi-
nation. The change in illumination is a result of the intervening atmos-
phere and the clouds. The ToolKit allows one to look at illumination of
slices through the atmosphere, the various streams of radiation, slices of
the clouds, and any of the quantities handled by WAVES.

WAVES has been used to modify images that include scenarios with a
horizontal path length, slant path scenarios, and vertical viewing sce-
narios. An example of a vertical viewing scenario is shown in figure 4.
The images, downloaded from the LandSat satellite commercial web
page, are of a building in Vienna, Austria. Figure 4a is the untreated, clear

Figure 3. Illumination
visualization of
volume of
atmosphere.
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Figure 4. Vertical
viewing scenario of
Vienna, Austria:
(a) clear LandSat
image, (b) summer
urban haze aerosol
inserted over image,
and (c) thin stratus
cloud inserted over
image.

(a)

(b)

(c)

image. We have taken that image and imposed a summer haze aerosol for
figure 4b, and a thin stratus cloud in figure 4c. Notice that the red cars in
the parking lot retain their red color better than the blue objects in the
scenes with the aerosols or thin cloud. This is what one would expect
from scattering by aerosols. The detail in these images is better preserved
when viewed on a computer screen than on a printed page or viewgraph.

That an image may be modified to include additional effects means that it
can be used as a planning tool for various contingencies, as an evaluation
tool for testing and evaluation, and as an engineering tool for develop-
ment. It also means that we may be able to remove these atmospheric
effects from degraded images.
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4. Past and Future Perspectives
WAVES research initiatives in the past have included development of the
n-stream model (improvement over the original two-stream model),
albedo effects, flares, enhanced aerosol choices, and the evaluation of the
multiple scattering routine. Two past efforts to evaluate WAVES were a
comparison of several WAVES scenarios to corresponding Monte Carlo
calculations with a documented Monte Carlo model (Tofsted et al, 1995;
Wells, 1995, 1996). The other projects used scene metrics and statistics in
an attempt to quantify physical properties depicted in a scene (Gillespie
et al, 1995; Wetmore et al, 1997).

Current research projects include an integration and end-to-end evalua-
tion with integrated CSSM-BLIRB models (Mozer et al, 1997; Wetmore et
al, 1997). This project includes the development of the appropriate hooks
with the WAVES suite, including all cloud types modeled by CSSM, and
the use of that input to appropriately calculate the effect of the atmos-
phere on electromagnetic radiation. As mentioned above, the integrated
model is being experimentally evaluated during an ongoing Army/Air
Force two-year program, funded by the Executive Agent for Space and
Atmosphere. Another part of this work has been to upgrade the absorp-
tion calculations currently done by LOWTRAN to those done by
MODTRAN.

Another project started this year, Smoke Clouds for Simulation, funded
by CHSSI (Common HPC Software Support Initiative), is the integration
of WAVES and the 3-D textured smoke model with scaleable architecture.
The smoke model is based on the EOSAEL COMBIC model (Ayres et al,
1998) and a texture model developed by ARL called STATBIC (Hoock and
Giever, 1994; O’Brien and Hoock, 1998). Output from the STATBIC-
COMBIC model is shown in figure 5a, and output from the smooth
plume model in COMBIC is shown figure 5b. We can use the same archi-
tecture to incorporate smoke as we have used for the clouds or aerosols.
Once cloud plumes can be computed and textured, we should be able to
regularly depict smokes with our WAVES suite. This will create a robust
smoke model for use with total atmospheric simulations. Since much of
the coding for these algorithms is legacy FORTRAN, innovative computa-
tional techniques and high-performance computing techniques such as
scaleable architecture are speeding up computation significantly.

We have preliminary results for a dust cloud in an image similar to the
one shown in figure 3. In figure 3, the cloud is a water vapor cloud.
Similar modeling techniques give us the image in figure 6. The cloud is a
low-altitude dust cloud generated by a fractal model that is not tuned for
dust or military smokes. The calculations for this image generation are
not robust as yet, but are planned to be so in the future. There is a layer of
dust on the ground in figure 6. Notice that the shadow under this cloud is
not as dark as for water clouds, because the cloud is not as thick. (Note:
the scale of illumination is different in fig. 3 and 6.) Work in the near
future will focus in part on building better smoke and dust cloud
capabilities.
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Future directions include consideration of polarization effects and an
expanded wavelength range. Longer-range projects include integration of
the effects of wind, transport and diffusion, atmospheric forecast data,
and a turbulence model that can provide realistic scintillation effects for
simulation.

Figure 6. Dust cloud in
virtual environment.

Figure 5. COMBIC
and COMBIC-
STATBIC smoke
plume images.
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5. Model Suite Documentation Outline
The WAVES software is being documented through a series of Army
Research Laboratory technical reports. The general volumes planned are
outlined below, with short commentary on the contents of each volume.

Volume 1 WAVES Overview

This volume describes the general overview, capabilities, and philosophy
behind the WAVES suite. It also summarizes the other documentation
that is (or will be) available for WAVES.

Volume 2 User’s Guide

This volume describes the use of the WAVES models and guides both the
novice and experienced user through the many inputs and outputs of the
various models.

Volume 3 Sample Scenarios

Sample scenarios are published in this volume, which may be updated
periodically. These sample scenarios can be used to test the code for
extreme conditions.

Volume 4 BLIRB Technical Documentation

The technical documentation describes the physics of the radiative trans-
fer model in BLIRB, as well as the approximations and shortcomings of
the model. This information can be found in the Zardecki references
(1991, 1992, 1993a, 1993b).

Volume 5 ATMOS Technical Documentation

This report is technically very similar to the EOSAEL CN2MAR report
published as part of the EOSAEL series of technical reports (Tunick, 1998).

Volume 6 3DSMOKE Technical Documentation

The 3DSMOKE model is a direct adaptation of the EOSAEL COMBIC
model combined with the STATBIC texture model to provide the inhomo-
geneous smokes.

Volume 7 WAVES ToolKit

This volume describes utilities built to assist in the use of WAVES. Utili-
ties are important to the management of the information that must move
between the various modules of WAVES (Seablom, 1998).

Volume 8 Model Evaluations

This volume is a compilation of several model evaluations done on the
models in WAVES, and on WAVES as a suite of models. It may contain
several sub-volumes or parts. This information is already contained in
several reports and papers (Gillepsie et al, 1995; Mozer et al, 1997; Wells,
1995, 1996; Wetmore, 1997; Zardecki, 1992, 1993a).
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6. Summary
In the past the EOSAEL models were the standard for calculations of
transmission through the atmosphere, smoke, and dust (Wetmore, 1993).
A need is emerging for atmospheric effects modeling, as EOSAEL be-
comes a commercialized product. To this end, the WAVES suite was
designated as an ideal software product in which to include small-scale
smoke simulation. WAVES is part of a tri-services effort that provides an
atmospheric simulation from MODTRAN calculations for large-scale
extinction, CSSM calculations for natural cloud effects, BLIRB calculations
for radiative transfer, and ATMOS calculations for blurring due to turbu-
lence. A new version of COMBIC that integrates fractal texturing
(STATBIC) is being developed for WAVES (Pearson, 1998; O’Brien and
Hoock, 1998). It is expected that WAVES (Wetmore, 1998) will become a
standard environment for radiative transfer calculations for the Army in
the next three to five years.
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